CLUSTERING OF GENE EXPRESSION DATA AND END-POINT MEASUREMENTS BY SIMULATED ANNEALING
نویسندگان
چکیده
منابع مشابه
Clustering of Gene Expression Data and End-Point Measurements by Simulated Annealing
Most clustering techniques do not incorporate phenotypic data. Limited biological interpretation is garnered from the informal process of clustering biological samples and then labeling groups with the phenotypes of the samples. A more formal approach of clustering samples is presented. The method utilizes simulated annealing of the Modk-prototypes objective function. Separate weighting terms a...
متن کاملUnsupervised Gene Selection and Clustering Using Simulated Annealing
When applied to genomic data, many popular unsupervised explorative data analysis tools based on clustering algorithms often fail due to their small cardinality and high dimensionality. In this paper we propose a wrapper method for gene selection based on simulated annealing and unsupervised clustering. The proposed approach, even if computationally intensive, permits to select the most relevan...
متن کاملthe clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance
با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...
Feature Selection for Microarray Gene Expression Data using Simulated Annealing guided by the Multivariate Joint Entropy
In this work a new way to calculate the multivariate joint entropy is presented. This measure is the basis for a fast information-theoretic based evaluation of gene relevance in a Microarray Gene Expression data context. Its low complexity is based on the reuse of previous computations to calculate current feature relevance. The μ-TAFS algorithm –named as such to differentiate it from previous ...
متن کاملCapacitated Clustering Problems by Hybrid Simulated Annealing and Tabu Search
The capacitated clustering problem (CCP) is the problem in which a given set of weighted objects is to be partitioned into clusters so that the total weight of objects in each cluster is less than a given value (cluster 'capacity'). The objective is to minimize the total scatter of objects from the 'centre' of the cluster to which they have been allocated. A simple constructive heuristic, a R-i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Bioinformatics and Computational Biology
سال: 2009
ISSN: 0219-7200,1757-6334
DOI: 10.1142/s021972000900400x